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Abstract. In this paper, an efficient iterative method of arbitrary integer
order of convergence = 2 has been established for solving the hyperbolic
form of Kepler’s equation. The method is of a dynamic nature in the sense
that, moving from one iterative scheme to the subsequent one, only addi-
tional instruction is needed. Most importantly, the method does not need
any prior knowledge of the initial guess. A property which avoids the crit-
ical situations between divergent and very slow convergent solutions that
may exist in other numerical methods which depend on initial guess. Com-
putational Package for digital implementation of the method is given and
is applied to many case studies.
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1. Introduction

Many instances of hyperbolic orbits occur in the solar system and recently, among the
artificial satellites, lunar and solar probes. Moreover, in some cases of orbit determina-
tion for an elliptic orbit, it may very well happen (Escobal 1975) that during the solution
process (usually iteration), the eccentricity ¢ becomes greater than unity and the orbit
becomes hyperbolic. Also, in the interplanetary transfer, the escape from the depar-
ture planet and the capture by the target planet involve hyperbolic orbits (Gurzadyan
1996). On the other hand, in orbit determination of visual binaries provisional hyper-
bolic orbits are used to represent the periastron section of high-eccentricity orbits of
long and indeterminate period (Knudsen 1953). In fact, we should handle hyperbolic
orbits frequently when integrating a perturbed motion with the initial condition of
nearly parabolic orbits (Fukushima 1997).

From the above, it is then clear that the hyperbolic orbits not only exist naturally,
but can also be used to solve some critical orbital situations.

The position—time relation in hyperbolic orbits is known as Kepler’s equation for
the hyperbolic case and is given as

M=¢sinhG—-G; l1=<e<oc; 0=M <o, (1.1)
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