InCites Journal Citation Reports Web of Science

Essential Science Indicators

EndNote

Sian In 🔻

Help

English -

Web of Science

Search History Search Search Results My Tools ▼ **Marked List** 41 of 455 Add to Marked List

Copper Oxide Based Polymer Nanohybrid for Chemical Sensor Applications

By: Khan, SB (Khan, Sher Bahadar)[1,2]; Rahman, MM (Rahman, Mohammed M.)[1,2]; Akhtar, K (Akhtar, Kalsoom)^[3,4]; Asiri, AM (Asiri, Abdullah M.)^[1,2]; Alamry, KA (Alamry, Khalid A.)^[2]; Seo, J (Seo, Jongchul)^[5]; Han, H (Han, Haksoo)^[6]

View ResearcherID and ORCID

INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE

Volume: 7 Issue: 11 Pages: 10965-10975

Published: NOV 2012 **View Journal Impact**

Abstract

PCC based nanohybrid has been synthesized by simple intercalation of CuO nano-sheets into PPC matrix. The morphological and phisochemical structure of nanohybrid was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Energy dispersive spectroscopy (EDS), and Fourier transforms infrared spectroscopy. Interestingly, the morphology of CuO nano-sheets was changed into nanoparticles after intercalation into the polymer matrix. From application point of view, chemical sensing performance of PPC and nanohybrid was investigated by simple I-V technique using nitrophenol as an organic pollutant. By applying to nitrophenol sensing, both PPC and nanohybrid performed as best nitrophenol chemi-sensor in terms of sensitivity. Nanohybrid showed 11.25 times higher sensitivity (4.50 mu A.cm(-2).mM(-1)) than pure PCC (0.40 mu A.cm(-2).mM(-1)). Therefore, nanohybridization is an efficient route to improve sensing performance of PPC.

Keywords

Author Keywords: Poly propylene carbonate; CuO nano-sheet; Nanohybrid; Organic pollutants; Nitrophenol; Chemical sensing

KeyWords Plus: WATER SORPTION PROPERTIES; POLY(PROPYLENE CARBONATE); PHOTO-CATALYST; NANOCOMPOSITES; SILICA; MONTMORILLONITE; INTERCALATION; **NANOPARTICLES**

Author Information

Reprint Address: Khan, SB (reprint author)

King Abdulaziz Univ, CEAMR, POB 80203, Jeddah 21589, Saudi Arabia.

Addresses:

- [1] King Abdulaziz Univ, CEAMR, Jeddah 21589, Saudi Arabia
- [2] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 21589, Saudi Arabia Organization-Enhanced Name(s)

King Abdulaziz University

- [3] Ewha Womans Univ, Div Nano Sci, Seoul 120750, South Korea
- [4] Ewha Womans Univ, Dept Chem, Seoul 120750, South Korea
- [5] Yonsei Univ, Dept Packaging, Wonju 220710, Kangwondo, South Korea
- [6] Yonsei Univ, Dept Chem & Biomol Engn, Seoul 120749, South Korea

E-mail Addresses: sbkhan@kau.edu.sa; hshan@yonsei.ac.kr

Citation Network

16 Times Cited 29 Cited References View Related Records

Create Citation Alert

(data from Web of Science Core Collection)

All Times Cited Counts

16 in All Databases

16 in Web of Science Core Collection

3 in BIOSIS Citation Index

0 in Chinese Science Citation Database

0 in Data Citation Index

0 in Russian Science Citation Index

0 in SciELO Citation Index

Usage Count

Last 180 Days: 0 Since 2013: 14

Learn more

Most Recent Citation

Miluski, Piotr. Optical properties of spirooxazine-doped PMMA fiber for new functional applications . OPTICAL ENGINEERING, APR 2017.

View All

This record is from: Web of Science Core Collection

- Science Citation Index Expanded

Suggest a correction

If you would like to improve the quality of the data in this record, please suggest a correction.

Funding

Funding Agency	Grant Number
National Research Foundation of Korea	NRF-2009-C1AAA001-0092926
National Research Foundation (NRF) of Korea	2011-0016750

View funding text

Publisher

ELECTROCHEMICAL SCIENCE GROUP, A SPOMENICE 7/12 , 19210 BOR, BELGRADE, VJ 12, SERBIA

Categories / Classification

Research Areas: Electrochemistry

Web of Science Categories: Electrochemistry

Document Information

Document Type: Article Language: English

Accession Number: WOS:000312934600049

ISSN: 1452-3981

Other Information

IDS Number: 062QH

Cited References in Web of Science Core Collection: 29 Times Cited in Web of Science Core Collection: 16

41 of 455